Naphthalenothiophene imide-based polymer exhibiting over 17% efficiency
نویسندگان
چکیده
•NTI is synthesized for a new family of polymer donors•The strategy introducing thiophene can significantly enhance the PCE NTI-polymer•PNTB-2T-based binary and ternary devices exhibit efficiencies 16.72% 17.35% With emergence highly efficient non-fullerene electron acceptors, there was demand to develop donors match these narrow band-gap molecules. Designing novel electron-deficient monomers that could effectively lower polymer’s HOMO level fine-tune physical properties vital donor evolution. Herein, we developed monomer naphthalenothiophene imide (NTI) NTI-based donors—PNTB PNTB-2T. Polymer chain modification strategy, which works by inserting extra thiophenes, enhanced efficiency 3.81% PNTB:Y6 PNTB-2T:Y6 device, eventually PNTB-2T:Y6:PC71BM device. PNTB-2T-based also excellent batch-to-batch reproducibility in photovoltaic performance distinguishes them from other high-performance donors. This work provides insights into renovation organic solar cells. Developing crucially important future development Here, report copolymers PNTB The strong electron-withdrawing ability NTI facilitates tuning while simultaneously maintaining low-lying value. chains thiophenes results closed π−π stacking ordered packing PNTB-2T proven be an effective increase device performance. Thus, cell 16.72%, further third component PC71BM, whereas only 3.81%. Importantly, reproducibility. These features make this very promising design strategies will enlighten cells (OSC). Bulk-heterojunction (OSCs) require both acceptors fabricate active layer, relies on photophysical miscibility acceptors.1Huang Y. Kramer E.J. Heeger A.J. Bazan G.C. Bulk heterojunction cells: morphology relationships.Chem. Rev. 2014; 114: 7006-7043Crossref PubMed Scopus (963) Google Scholar, 2Lu L. Zheng T. Wu Q. Schneider A.M. Zhao D. Yu Recent advances bulk cells.Chem. 2015; 115: 12666-12731Crossref (1992) 3Zhou H.X. Yang L.Q. You W. Rational high conjugated polymers cells.Macromolecules. 2012; 45: 607-632Crossref (1344) 4Yan C.Q. Barlow S. Wang Z.H. Yan H. Jen A.K.-Y. Marder S.R. Zhan X.W. Non-fullerene cells.Nat. Mater. 2018; 3: 18003Crossref (1524) 5Zhang G.Y. J.B. Chow P.C.Y. Jiang K. Zhang J.Q. Zhu Z.L. J. Huang F. Nonfullerene acceptor molecules 118: 3447-3507Crossref (1010) 6Luo Z. Ma R. Liu Xiao Sun Xie G. Yuan Chen et al.Fine-tuning energy levels via asymmetric end groups enables with over 17%.Joule. 2020; 4: 1236-1247Abstract Full Text PDF (217) Scholar In last several years, rapid 2,2'-[[6,6,12,12-tetrakis(4-hexylphenyl)-s-indacenodithieno[3,2-b]thiophene]methylidyne(3-oxo-1H-indene-2,1(3H)-diylidene)]]bis(propanedinitrile) (ITIC) Y6 its derivatives, have pushed power conversion (PCE) state-of-the-art OSCs higher than 17%.7Lai Chao P. Lang Zhen N. Mo al.Trifluoromethylation 3D interpenetrated low-band-gap cells.Joule. 688-700Abstract (111) 8Lin Bai Li X. An challenging fullerenes cells.Adv. 27: 1170-1174Crossref (2451) 9Jia B. M. Tang Russell T.P. Enhancing fused-ring unidirectional extension.J. Am. Chem. Soc. 2019; 141: 19023-19031Crossref (97) 10Cui Yao H.F. Xian K.H. Hong Y.M. Xu K.Q. C.B. al.Single-junction approaching 18% efficiency.Adv. 32: e1908205Crossref (827) 11Jiang Wei Q.Y. Lai J.Y.L. Peng Z.X. Kim H.K. Ye Ade Zou Y.P. Alkyl small molecule 3020-3033Abstract (449) 12Yuan Zhou Yip H.-L. Lau Lu C. H.J. Johnson P.A. 15% using core.Joule. 1140-1151Abstract (2425) 13Zhu G.Q. Hao T.Y. Qiu Prine Ali Feng al.Efficient 16.88% enabled refined crystallization improved charge transfer transport properties.Adv. Energy 10: 1904234Crossref (228) Unlike fullerene properties, such as crystalline nature, visible-NIR light absorption, LUMO moderate levels.10Cui D-A having matched properties. Thus far, donors, PM6, D18, their variants, 17%.10Cui Scholar,14Liu Jin Qin Xiong al.18% cells.Science Bulletin. 65: 272-275Crossref (1531) developing field OSCs. alternating electron-donating (D) electron-accepting (A) units are most widely used because ease fine-tuning frontier absorption coverage.15Feng L.W. J.H. Mukherjee Sangwan V.K. Strzalka J.W. Hersam M.C. al.Readily accessible benzo[d]thiazole nonfullerene > 16% potential pitfalls.ACS Lett. 5: 1780-1787Crossref (27) 16Jones A.L. Riley Pelse I. J.X. Abdelsamie Toney M.F. So Brédas J.-L. Reynolds J.R. Acceptor gradient 31: 9729-9741Crossref (10) 17Zhang Han Su A. Phthalimide guests enable 17% parallel-like quaternary strategies.Adv. 20001436Crossref (55) 18Sun Pan Shang Min Lv Meng al.Achieving fast separation low nonradiative recombination loss rational fluorination high-efficiency e1905480Crossref 19Sun al.A monothiophene unit incorporating fluoro ester substitution enabling 16.4% efficiency.Energy Environ. Sci. 12: 3328-3337Crossref 20Xu Bi Realizing 13% green-solvent-processed 1,3,4-thiadiazole-based wide-bandgap copolymers.Adv. 30: 1703973Crossref (381) 21Zhang C.-H. Hu Lin Xing al.Methyl thioether functionalization polymeric processed non-halogenated solvents.Chem. 3025-3033Crossref (17) 22Lin F.Y. H.T. Xin J.M. Zeng T.B. M.L. Liang Y.Y. Thieno[3,4-c]pyrrole-4,6(5H)-dione optimized alignments based 2017; 29: 5636-5645Crossref (37) 23Liang D.Q. Tsai S.T. Ray L.P. Highly structural electronic properties.J. 2009; 131: 7792-7799Crossref (1248) 24Liang Son Development semiconducting cells.J. 56-57Crossref 25Liao S.H. Jhuo Cheng Y.S. S.A. Fullerene derivative-doped zinc oxide nanofilm cathode inverted low-bandgap (PTB7-Th) performance.Adv. 2013; 25: 4766-4771Crossref (1056) 26Qian M.J. Y.R. L.J. Guo S.Q. Tan Z.A. Hou Design, application, study aggregation solution state.Macromolecules. 9611-9617Crossref (527) 27Zhang A large-bandgap versatile applications 4655-4660Crossref (555) Historically speaking, creation play crucial role evolution (PTB7, PTB7-Th, PM6) dramatically elevate OSCs.24Liang not impacts film-forming but influences value donor, parameter it closely relates open-circuit voltage (Voc) devices.2Lu Scholar,28Fu cells.Angew. Int. Ed. Engl. 58: 4442-4453Crossref (264) 29Yu S.M. X.G. Phthalimide-based wide bandgap 50: 8928-8937Crossref (26) 30Qiao X.L. W.C. Q.H. H.Z. Z.Q. R.Q. Bithienopyrroledione vs. thienopyrroledione copolymers: dramatic Commun. 53: 3543-3546Crossref 31Chao P.J. Mu D.Z. He Chlorination side chains: achieving open circuit 1.0 V benzo[1,2-b:4,5-b ′]dithiophene-based cells.ACS Appl. 1: 2365-2372Crossref (45) 32Chao Chang benzo[1,2-b:4,5-c′]dithiophene-4,8-dione-based 16%.Adv. 1907059Crossref (49) 33Xu Single-junction 16.35% platinum(II) complexation strategy.Adv. e1901872Crossref (436) 34Fan B.B. D.F. Zhong W.K. Z.M.Y. Ying Cao Achieving single-junction cells.Sci. China 62: 746-752Crossref (718) 35Wang Shi M.M. Z.C. Y.F. Solution-processed iridium approach.Adv. 2000590Crossref (94) (around −5.65 eV) (Y6 variants) maximize Voc, should controlled close ensure hole at interfaces. Considering influenced monomer, sufficiently limit choice copolymerizing unfavorable tune donors.36Kim Park Kwak Grimsdale A.C. Hwang D.H. Effect π-conjugated bridges TPD-based medium tandem cells.Energy 7: 4118-4131Crossref Scholar,37Wang Effects donor-π-acceptor copolymers.Macromolecules. 1208-1216Crossref (180) creating research topic Six-membered imides were usually n-type materials they exhibited ability.38Al Kobaisi Bhosale S.V. Latham Raynor Functional naphthalene diimides: synthesis, applications.Chem. 2016; 116: 11685-11796Crossref (507) 39Zhan C.L. J.N. More conformational "twisting" or "coplanarity": molecular designing 28: 1948-1964Crossref (219) 40Jones B.A. Facchetti Wasielewski M.R. Marks T.J. Tuning orbital energetics arylene diimide semiconductors. Materials ambient stability transport.J. 2007; 129: 15259-15278Crossref (897) five-membered aromatic ring basic derivatives.41Kirner Sekita Guldi D.M. 25th anniversary article: 25 years chemistry.Adv. 26: 1482-1493Crossref (100) Scholar,42Lai Y.-Y. Y.-J. Hsu C.-S. Applications functional 1866-1883Crossref (158) Bringing two together properly create monomers. Based above consideration, (4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) ((4,8-bis(5-(2-butyloctyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']di-thiophene-2,6-diyl)bis (thiophene-5,2-diyl))-bis(trimethylstannane). Although has more each repeating PNTB, (−5.60 eV PNTB; −5.52 PNTB-2T). polymers’ resulting exhibiting stacking, packing, transport. After blending Y6, Voc 0.872 V, four batches varying weight (Mn: 47.16–114.61 KDa) polydispersity index (PDI: 2.69–2.87) best parallel experiments. indicate construction next-generation especially upcoming large-scale industrial production simply Suzuki coupling reaction between compounds 1 3,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophene (Scheme 1). 2016, Marcin al., reported synthesis NMI-pyrrole hybrid bears some kind similarity chemical structure NTI.43Zhylitskaya Cybińska Chmielewski Lis Stępień Bandgap engineering pi-extended pyrroles. modular approach chromophores multi-redox activity.J. 138: 11390-11398Crossref 8 step reactions starting material acenaphthene construct π-extended porphyrins, optical It noted did find any similar been type 3 Stille NTI-2Br 2-(tributylstannyl)-4-ethylhexylthiophene, followed bromination. (Figures 1A 1B ) prepared 4 5, respectively, Pd2(dba)3 catalyst. PNTB-2T, longer alkyl (butyloctyl) benzo[1,2-b:4,5-b']dithiophene (BDT) solubility ethylhexyl insoluble even refluxing chlorobenzene, makes processing impracticable. show good commonly solvent chloroform, chlorobenzene. gel permeation chromatography (GPC) measurement performed 150°C trichlorobenzene eluent. (PDI) three five presented Figures S1–S8. Thermogravimetric analysis (TGA) indicates thermal decomposition temperature (5% loss) 438°C 389°C (Figure S9), meet requirements fabrication. differential scanning calorimetry (DSC) shows no clear endothermic exothermic peak S10) scan range 40°C–300°C.Figure 1The structures, levels, polymersShow full caption(A B) (B).(C D) top view calculated geometries (C) (D).(E) Schematic Y6.(F) Absorption spectra chloroform solution, as-cast film.View Large Image Figure ViewerDownload Hi-res image Download (PPT) (A (B). (C (D). (E) Y6. (F) film. To investigate polymer-conjugated backbone planarity polymers, geometry density theory (DFT) Gaussian package B3LYP/6–31G∗. long replaced methyl group, calculation. shown 1C 1D. exhibits all atoms core same plane. steric hindrance exists bay area, dihedral angle 35.6° 32.4° respectively. group affects 22.1° 26.8° observed 3-methylthiophene thiophene/BDT PNTB. From seen leads large long-range torsion consistent distance 4.04 Å grazing-incidence wide-angle X-ray scattering (GIWAXS) measurement. Compared relatively better core. favors verified GIWAXS data. orbitals DFT B3LYP/6–31G∗ summarized S11. delocalized whole mainly localized extension onto chain. determined cyclic voltammetry (CV) ferrocene (−4.80 standard reference S12). ELUMO −3.53 −3.43 onset reduction potentials, EHOMO −5.60 5.52 oxidation (Table values −5.45 fluoride 4,8-bis(5-(2ethyl hexyl)thiophen-2-yl)benzo[1,2-b:4,5-b]dithiophene (BDTT) unit, obviously photovoltaics (OPV) devices.14Liu Scholar,27Zhang Scholar,32Chao slightly elevated due units. ΔEHOMO offset 0.05 0.13 eV, enough drive exciton dissociation blend films according systems.44Yao Cui Qian Ponseca Jr., C.S. Honarfar Gao al.14.7% electrostatic difference.J. 7743-7750Crossref (227) UV-vis concentration 1.5 × 10−5 g ml−1 measured recorded, 1F. maximum 511 nm, red shifted 48 559 nm. cast peaks 541 566 nm film 30 7 coefficient 6.9 104 9.8 cm−1 S13 Table 1. (450–650 nm) complements 600–900 harvesting. conventional configuration ITO/PEDOT:PSS/PNTB PNTB-2T:Y6/PNDIT-F3N/Ag fabricated employing acceptor. OPV under simulated illumination 100 mW cm−2 AM 1.5G nitrogen atmosphere. J-V curves, EQE spectra, parameters 2A 2B 2. layer thickness around spin-casted solution. Solar optimization donor/acceptor ratio tested. little amount additive annealing 110°C proved devices. 1:1.5 D:A mass ratio, 13 mg concentration, 0.5% DIO (volume ratio), annealed gave highest 3.81%; 0.899 V; Jsc 8.68 mA cm−2; FF
منابع مشابه
Electroactive Polymer Nanoparticles Exhibiting Photothermal Properties.
A method for the synthesis of electroactive polymers is demonstrated, starting with the synthesis of extended conjugation monomers using a three-step process that finishes with Negishi coupling. Negishi coupling is a cross-coupling process in which a chemical precursor is first lithiated, followed by transmetallation with ZnCl2. The resultant organozinc compound can be coupled to a dibrominated...
متن کاملBenzimidazole-based anion receptors exhibiting selectivity for lactate over pyruvate.
The influence of anions on tautomerism in benzimidazole containing anion receptors has been studied via a variety of techniques in both solution and the solid state. The results show that hydrogen bonding interactions between the receptors and guests have a significant effect of the nature of the tautomer present. The compounds show a preference for complexation of lactate over pyruvate.
متن کاملUltrafast recombination for NiO sensitized with a series of perylene imide sensitizers exhibiting Marcus normal behaviour.
Ultrafast recombination observed from several perylene imide sensitizers bound to NiO appears to align with Marcus normal region behaviour; this indicates recombination to intra-bandgap states.
متن کاملDynamic porous coordination polymer based on 2D stacked layers exhibiting high sorption selectivity for CO2.
A new dynamic porous coordination polymer (PCP) [Ni(dcpy)(bipy)(0.5)(H(2)O)]·1.5H(2)O (1) was synthesized by assembly of 3-(2',5'-dicarboxylphenyl)pyridine (dcpy), 4,4'-bipyridine (bipy) and NiSO(4)via solvothermal, hydrothermal and microwave methods, displaying a wavelike 2D stacked layer framework. Gas adsorption studies for 1 shows a high selective adsorption of CO(2) over other gases (N(2),...
متن کاملA 2D cobalt based coordination polymer constructed from benzimidazole and acetate ion exhibiting spin-canted antiferromagnetism.
A coordination polymer, [Co(II)(bIM)(acetate)] (bIM = benzimidazole) was synthesized using a solvothermal method; the complex has a two dimensional non-interpenetrated network structure and exhibits a spin-canted antiferromagnetic behaviour at low temperature and a high coercive field.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Joule
سال: 2021
ISSN: ['2542-4351', '2542-4785']
DOI: https://doi.org/10.1016/j.joule.2021.02.003